根據《衛報》報導,首位徒步抵達北極和南極的德國探險家富克斯(Arved Fuchs)警告

根據《衛報》報導,首位徒步抵達北極和南極的德國探險家富克斯(Arved Fuchs)警告,郵輪的數量正在攀升,船愈大,問題愈多。遊客是唯一從中受益的人,居民無法從中得到任何好處。

全球每年的郵輪旅客從2009年的1100萬人,激增到2018年的2850萬人,人數翻倍。越來越多旅遊公司推出北極旅行或「遠徵」的郵輪行程,以「真正的最後邊境」(the last true frontiers)為名行銷吸引遊客,稱人們可以看到稀有的野生動物、壯觀的景色和融化的冰帽。旅遊業人士指出,由於郵輪營運商面臨越來越多區域限制,加上停靠土耳其、北非等伊斯蘭教國家引發消費者對恐怖主義的疑慮,因此北極地區郵輪變得愈來愈有吸引力,格陵蘭和加拿大北部成了最熱門的地區。

根據挪威基金會「 Centre for High North Logistics」提供的數據,普通郵輪對環境造成的負擔相當可觀,一名郵輪乘客一天會產生8加侖(約30公升)的污水,艙底污水每天逾9萬5000公升。

本站聲明:網站內容來源於https://e-info.org.tw/,如有侵權,請聯繫我們,我們將及時處理

【其他文章推薦】

無塵擦拭紙各大品牌廠商販售比價網!

※如何知道自已的電腦cpu支不支持AVX指令集?

※如何正確使用飲水機?

※攻戰消費者第一視覺,包裝設計很重要!

滑鼠墊適用各種文宣活動廣告曝光,專業客製服務

封口機購物網-不怕你比價,就怕你買貴!

台東縣長饒慶鈴13日明確表示將啟用焚化廠。台東環盟執委廖秋娥說

台東縣長饒慶鈴13日明確表示將啟用焚化廠。台東環盟執委廖秋娥說,7月下旬縣府在台東市辦的說明會,根本是一面倒反對啟爐,縣府竟執意啟爐。她說,民意反焚,所以縣府才在八年前賠了19.6億買回焚化廠,八年來行政怠惰,不努力解套,才走回啟用焚化廠之路。

縣府才開完說明會就宣布啟用焚化廠,重啟費用為5.6億元,將以追加預算案,排入8月台東縣議會臨時會議程,修繕時間需要二年半。廖秋娥批評愚弄民意,環盟是否採用行動反制?內部還須進一步商討。

廖秋娥說,環團提出了具體可行的方案,只要廣設資源回收站,徹底實行,垃圾量可以降到10%,根本不需要焚化廠。

本站聲明:網站內容來源於https://e-info.org.tw/,如有侵權,請聯繫我們,我們將及時處理【其他文章推薦】

※如何利用一般常見的「L型資料夾」達到廣告宣傳效果?

※哪裡買的到省力省空間,方便攜帶的購物推車?

飲水機皆有含淨水功能嗎?

※無毒橡膠墊片哪裡買的到?

※錢要花在刀口上,選購隔熱紙前必須知道的九件事 !

※各種升降平台款式?

※(全省)堆高機租賃保養一覽表

政府間氣候變遷專門委員會(IPCC)8日上午在日內瓦發表了氣候變遷和土地特別報告

政府間氣候變遷專門委員會(IPCC)8日上午在日內瓦發表了氣候變遷和土地特別報告。報告指出,土地提供「糧食、飼料、纖維、燃料和淡水」,沒有土地,人類社會和經濟就「無法存在」。報告警告,全球氣溫上升和近幾十年來前所未有的土地和淡水開採率正威脅這個供給關係。

報告的完整標題說明了其中涵蓋的相互關聯和重疊的各個問題,包括「氣候變遷、沙漠化、土地劣化、永續土地管理、糧食安全和陸域生態系統中的溫室氣體。

在本篇問答中,Carbon Brief解讀報告對氣候變遷與土地如何互相影響的說明,以及其他關鍵主題,如糧食安全、負排放和如何因應土地利用相關的各種相互重疊的挑戰。

為什麼IPCC要發表這份報告?

IPCC的土地報告在瑞士日內瓦進行為期一週的全體批准會議後公佈。在本次會議上,政府代表花一個晚上馬拉松式逐行批准了65頁的「決策者摘要」(summary for policymakers,SPM)報告。SPM達成共識後,IPCC也發表了完整的技術報告,將近1,400頁,另外還有補充文件。(SPM批准後,完整報告需要更新,以確保其與修訂後的SPM一致。這個部分尚未完成,因此各章節還可能會根據修訂紀錄文件來更新。)

這份土地報告最初是由IPCC在2016年4月奈洛比會議上委託編寫。報告的綱要草案隨後於2017年3月在墨西哥瓜達拉哈拉會議上通過。

2017年7月選出的作者團隊包括主要通訊作者、主要作者和編審,由來自52個國家的107位專家組成。每章都有數十位撰稿人支援。

8日上午的記者會上,IPCC主席Hoesung Lee說明了報告的整體調查結果:「土地是我們生活的地方。土地面臨越來越大的人類壓力,也是解決方案的一部分,但土地無法滿足一切。 」

土地報告是IPCC今年發表的第一份特別報告。第二份關於海洋和冰圈的報告將於今年9月發表。去年10月IPCC發表了關於暖化1.5°C的特別報告。

這些特別報告的目的是提供「對特定問題的評估」,補充IPCC每五到六年發表的「主要評估報告」。

新報告是IPCC繼2000年土地利用、土地利用變化和林業特別報告以來,第一份以土地為主題的報告。

完整報告的第四章列出了「土地」的定義:「生物圈的陸地部分,包括自然資源(土壤、近地表空氣、植被和其他生物相、水)、生態過程、地形、人類住區和在該系統內運作的基礎建設。」

第一章首先強調土地對人類文明的重要性:「沒有陸域生態系和生物多樣性提供的多種資源、服務和生計體系,我們的個人或社會身份和世界經濟都不會存在。」

報告稱,這在全球經濟的年度價值為75-85兆美元(在2011年根據2007年的美元價值計算),遠遠超過全球GDP的總和。

如SPM提供的下圖說明,目前全球不會結冰的土地中,近四分之三為人所利用。該地區約有12-14%已轉為種植作物(黃色),22%由受管理或人工林組成(藍色),37%是用於放牧和其他用途的草地(綠色)。右側的橙色矩形表示人類當前未使用的土地。

目前全球陸地表面的使用方式。色塊表示當前(2015年)全球土地使用和管理的程度,分為五大類,包含類別中的不確定範圍。「已用地」指人類定居處、人類管理的草地、林地和農田。「未用地」是指貧瘠的土地、未管理的草生地和林地。資料來源:IPCC土地報告,圖SPM.1c。

報告稱,土地利用的地理分佈以及「大幅佔用多樣的生態系服務和生物多樣性流失」是「人類歷史上前所未見」。人類各種程度的使用,影響約60-85%的森林和70-90%的其他自然生態系(如莽原、天然草原)。報告指出,土地使用導致全球生物多樣性下降11-14%。

人類的土地利用不僅空前普遍,且是在氣候暖化的背景下進行。報告說:

儀器觀測期間地表氣溫(灰線)和全球平均表面溫度(黑線)的演變。土地溫度為柏克萊、CRUTEM4、GHCNv4和GISTEMP資料集的平均值,顯示為偏離1850-1900的全球平均值。全球溫度為HadCRUT4、NOAAGlobal Temp、GISTEMP和Cowtan&Way資料集的平均值。資料來源:IPCC土地報告,圖SPM.1a。

這種暖化伴隨著降雨模式變化,「改變了生長季節的開始和結束,使區域作物減產,減少淡水供應,並使生物多樣性承受更大壓力和增加樹木死亡率。」

換句話說:氣候變遷正在放大人類施加在土地上的壓力。但是,氣候變遷本身,部分也是人類使用土地的結果。

「自然土地和土地管理的轉變是溫室氣體排放和氣候變遷的主要淨貢獻者,但陸域生態係也是溫室氣體匯。」

「因此,土地不意外地在許多巴黎協定國家自主減排承諾中扮演重要角色。」報告警告,我們能因應全球氣溫上升的時間很短。「可確定的是,機會之窗-可以實現重大變革、將氣候變遷限制在可容忍範圍內的時間-正在迅速縮短。」

由於非永續土地利用與氣候變遷之間密切相關,兩者分別讓各自的問題更難解,報告稱:「加強糧食安全和減少營養不良,同時抑制和扭轉沙漠化和土地劣化,是重大的社會挑戰,同時要適應和減緩氣候變遷影響,又不能犧牲土地的非物質利益,讓這個挑戰更顯艱鉅。」

這也表示,解決一個問題可以同時解決另一個問題,或是必須在兩者間有所取捨。這可能是這份報告的關鍵動機。正如SPM指出:「許多有助於氣候變遷適應和減緩的土地相關措施也可以防治沙漠化和土地劣化,並加強糧食安全。」

但是,第一章指出「這些方案中沒有哪些是互斥的」,這表示將這些方案以適合特定情境的方式整合起來,最有可能經濟有效地「同時達成減緩、調適氣候變遷和解決其他環境挑戰。」

什麼是土地劣化?

新的IPCC報告第四章將土地劣化定義為:

「土地狀態因直接或間接的人為過程呈現負面趨勢,包括人為氣候變遷,表現出長期減少或喪失至少下列之一:生物生產力、生態完整性或對人類的價值。」

該定義包括土壤、植被、水資源或野生動植物質量的暫時或永久性下降,或土地經濟生產力的惡化,例如為商業或生計目的耕作的能力。

表4.1(長達五頁)詳細說明了主要的劣化過程及其與氣候變遷的關係,像是不同類型的侵蝕(逐漸分解和去除岩石和土壤的過程),通常是透過自然力量,例如風、雨或波浪,但可能因耕作、放牧或砍伐森林等活動而加劇。

土壤肥沃度的喪失是另一種劣化形式。可能是由於氮、磷和鉀等營養物質流失,或土壤中有機物含量的下降。其他過程包括:植被類型和覆蓋的減少或變化、土壤的壓實和硬化、野火的增加以及過度開採地下水導致地下水位下降。(該定義僅關注人類直接或間接導致的劣化,不包括火山爆發和海嘯等自然現象。)

報告也指出,森林劣化也是一種土地劣化,只是發生在主要為森林的地區,而「森林砍伐是指森林轉變為非森林,涉及樹木覆蓋的喪失和土地利用的變化」。

報告稱,根據多項證據,全球森林總量從1990年至2015年下降了約3%。然而,近年來對毀林率變化的估計,不同方法產生不同的結果,衛星資料顯示森林損失正在加速,而實地估計則顯示正在減緩。

報告第四章說,森林土地劣化程度的估計也不甚一致。「對森林劣化的不同定義影響了估算森林劣化速度或影響的能力。此外,科學文獻有時會混淆森林劣化和森林砍伐。」

報告指出,所有驅動土地劣化的因素,從暴雨山崩這類短暫而高強度的事件,到長達數個世紀的養分或土壤流失,可形成一個光譜。土地劣化至少從大約1萬至7,500年前的新石器時代就開始,伴隨著人類農業擴張和人口成長發生,其長期性的影響可見一斑。

當然並非所有人類對土地的影響都會導致劣化,報告強調:「全世界有許多長期永續管理土地的例子(如梯田農業系統和永續管理的森林)…我們也承認,人類對土地和生態系的利用為社會提供了必需品和服務。」

巴西亞馬遜雨林空照圖。Neil Palmer/CIAT(CC BY-NC-ND 2.0)

氣候變遷如何影響土地劣化?

「土地劣化與幾個氣候變量密不可分,如溫度、降水、風和季節性,」報告說。這表示氣候變遷和土地劣化有很多相關的形式,報告補充說:

「這種相關更精確地說是一種因果關係網,而不只是一系列的因果關係。」

報告指出,氣候變遷會透過溫度和降雨模式的逐漸變化以及極端事件分佈和強度的變化來影響土地。有時候氣候變遷直接帶給土地劣化過程壓力,它也可能同時是附加於其他大規模人類活動壓力的次要壓力。

氣候變遷扮演「主要的全球性或區域性壓力」的三個過程。分別是「海平面上升導致海岸侵蝕、風暴頻率/強度增加,暖化導致永凍土融化,以及溫度升高和降水變化導致野火增加」。

例如,該報告「高度確信」,由於海平面上升,全球沿海地區的侵蝕將狀況將會惡化:「在多颶風地區(如加勒比海、東南亞和孟加拉灣),海平面上升加更強烈的氣旋,某些地區另外再加上地層下陷,將對人民和生計構成嚴重威脅,有時甚至超出了可適應的範圍。」

氣候變遷「不僅加劇了許多眾所週知的持續性土地劣化過程」,如農田和牧場等人為管理地景,也成為一種主要壓力,帶給自然和半自然生態系新的劣化方式。

暖化和降雨模式改變也將「引發土地和作物管理的變化,例如種植和收穫日期、作物種類和品種類型的變化」,報告指出,「這可能會改變土壤侵蝕的條件」。

報告還指出,「極端天氣和氣候的變化導致區域減產,影響糧食安全」。例如,近幾十年來,由於極端天氣事件,全球平均減少約10%的穀物產量。

氣候變遷已經透過促使遷徙、定居、族群建立和外來種的生態影響,改變外來種所造成的劣化。

當降雨模式發生變化,將導致植被覆蓋和組成改變,「這本身可能就是土地劣化的原因」,「如植被覆蓋本身就是水和風侵蝕造成土壤流失的重要因素」。

氣溫每增加1°C,一般來說空氣濕度可增加約7%。報告稱,這表示氣候暖化可能導致更強烈的降雨,「增加降雨的侵蝕力,進而增加水蝕的機會」。例如在印度中部,1950~2015年間極端降雨事件增加了三倍,這影響了數個土地劣化過程,尤其是土壤侵蝕。

降雨增加和隨之而來的土地劣化可能造成潛在致命後果-山崩機會增加。然而報告指出,雖然理論上極端降雨與這些事件有很強的連結,但目前沒有大量證據顯示氣候變遷與山崩有關。

強降雨和洪水還會「延後種植活動,增加土壤壓實,造成作物損失」,「與熱帶氣旋相關的洪水可導致降雨和暴風雨造成作物歉收」。報告指出,有時這種洪水影響產量的能力比乾旱更強,尤其是在印度等熱帶地區以及中國和歐洲中部和北部等中高緯度地區。

整體而言,某些極端天氣和氣候事件的頻率和強度因全球暖化而增加,並將在中高排放情境下繼續增加。

雨季洪患,對孟加拉的土地來說已是日常。Amir Jina攝(CC BY-NC-ND 2.0)

報告警告,炎熱加乾旱正威脅著已經發生乾旱的地區。「世界大部分地區的熱浪頻率、強度和持續時間會增加,部分已經發生乾旱的地區,乾旱頻率和強度會增加,主要是地中海、中歐、亞馬遜南部和非洲南部。」

報告指出,極端高溫事件會減少樹木的光合作用,限制樹葉的生長速度,影響整棵樹的生長。森林對未來熱壓力的抵抗力會降低,因為極端事件越來越常發生,「乾旱和熱壓力(包括暖冬)可能直接引發局部大量樹木死亡,並且會因蟲害和火災而加劇」。

報告稱,與此相關的是,氣候變遷對野火火勢和人類活動影響越來越大,未來的氣候變化將增加許多生物群落(如熱帶雨林)中野火的風險和嚴重程度。

在未來中高溫室氣體排放量的情境中,全球暖化將加劇熱壓力,使土壤水分更加不足。這將「提高乾旱頻率,導致乾旱加速發生、更強烈和普遍、持續時間更長,可能導致全球乾旱加劇。」

根據報告,氣候變遷導致的地球植被覆蓋變化可能會產生深遠的影響。根據一項研究,如果氣溫比工業化前高出2℃,三分之二的關鍵生物多樣性區域將保持完整,若高出4.5℃則只剩三分之一。在植物減少的地區,由於少了植被防止侵蝕,將發生土地劣化。

下圖來自報告的SPM,說明地表不同方面的風險程度如何隨溫度升高而變化。例如,乾旱地區(最左邊的長條)水資源短缺的風險從目前氣候的「一般」(黃色陰影),暖化2℃會增加到「高」(紅色),3℃會增加到「非常高」(紫色)。

圖表顯示,隨著氣溫升高,永凍土帶來的風險(右邊第三個長條)和糧食供給穩定性風險(最右邊的長條)會迅速增加。

然而,該報告強調氣候變遷某方面可以改善土地狀況。一個例子是「二氧化碳施肥」,即大氣中二氧化碳升高可促進植物生長,「大氣中二氧化碳濃度的增加有助土地改善,只是淨效應受到其他因素的調節,例如氮和水量,。」

然而,正如本週發表的亞馬遜模型研究所顯示,在土壤養分有限的地方,那些有助樹木生長的因素也可能受限。其他益處可能包括高緯度地區生長季節較長,這要歸功於溫暖的春季和秋季的-假設不受夏季乾旱影響的話—而且大氣中二氧化碳含量增加會提高樹木用水的效率。

儘管氣候變遷對土地有一些好處,但報告警告「負面影響仍佔大多數」,這些負面影響已有記錄並且會繼續增加。

報告還研究了土地劣化與人為氣候變遷之間相關的證據。這個研究領域叫做「氣候歸因」,通常適用於極端天氣事件。

要證明氣候變遷明確影響土地劣化「極具挑戰性」,因為劣化是「經常受多種因素影響的複雜現象」,與氣候、生態、土地類型和管理實踐有關。「將土地劣化明確歸因於氣候變遷的研究並不多,但氣候變遷增加土地劣化威脅的研究則不少。」

氣候變遷與土地劣化之間最重要的直接關係是溫度升高、降雨模式變化和降雨加劇。

科學家已經證明,這每一個環節都受到人為溫室氣體的影響。例如,Carbon Brief曾解釋過人類排放和活動如何引起自1950年以來觀測到的近100%的暖化。IPCC 1.5℃特別報告的結論是,人為引起的全球暖化導致全球強降水頻率、強度和/或數量增加。土地報告則指出,人為引起的氣候變遷使水文循環加劇已經得到相當的證實。

根據土地報告的結論,有「高度信心」且有「有力證據」顯示人為氣候變遷引起的降雨變化已經加劇了造成土地劣化的因素,但由於土地管理方法也很重要,將土地劣化歸因於氣候變遷並不容易。

此外,報告也指出:「氣候變遷加劇了大多數劣化過程,很明顯地,除非土地管理得到改善,否則氣候變遷將導致土地劣化加劇。」

土地如何推進氣候變遷?

土地扮演儲存溫室氣體的關鍵角色。根據報告,從2008年到2017年,土地吸收了全世界溫室氣體排放量的30%。

當樹木和其他類型植被進行光合作用時,土地從大氣中吸收二氧化碳。在這個過程中,植物用二氧化碳生成芽、根和葉。這表示只要植物存活,就可以充當長期的碳匯。科學家估計,土地中高達45%的碳是存在全世界的森林中。

土地儲存碳的另一個主要方式是透過土壤,通常經由植物材料、作物殘材和動物糞便獲得碳。全世界地下一公尺深的土壤所含碳量是整個大氣的三倍。

土地吸收溫室氣體的能力,目前正因大氣中二氧化碳濃度增加和較冷環境生長季節變長而增加。

土地雖然是碳的主要儲存處,但也可以排放出溫室氣體。

土地釋出溫室氣體的主要原因是地表的人類活動。報告發現,2007 ~2016年度全球溫室氣體排放量中約有23%來自農業、森林砍伐、泥炭地劣化和其他類型的土地利用。根據報告,二氧化碳釋出的主要因素是森林砍伐和其他類型的植被損失,而甲烷和一氧化二氮排放的主要因素是農業。

下圖來自SPM,顯示自1961年以來三種溫室氣體排放量的變化情況。圖表顯示(1)林業和其他土地利用變化產生的二氧化碳排放量,(2)牲畜甲烷排放(3)農業產生的一氧化二氮排放。

1961~2018年與1961年相比的溫室氣體排放量。圖表顯示了農業的一氧化二氮排放(1)、牲畜的甲烷排放(2)以及林業和其他土地利用變化的二氧化碳排放(3)。資料來源:改編自IPCC土地報告的圖SPM.1。

該圖表顯示,1960年代土地利用產生的二氧化碳排放量在21世紀穩定維持在「高水平」之前有所下降。從2008年到2017年,土地利用變化產生的二氧化碳排放總量約為每年15億噸。

報告稱,儘管土地利用排放處於「高水平」,但土地仍然是淨碳匯,也就是說土地目前吸收的二氧化碳超過排放的二氧化碳。

這是因為目前人類土地利用產生的排放被土地吸碳所抵銷,如下圖所示(取自第二章第30頁)。

在圖表中,人類活動(農業、林業和其他土地利用,簡稱AFOLU)對土地排放的影響以紅色表示,而自然過程和「間接」人類影響以綠色表示。藍色表示考慮這兩個因素時土地的總排放量。

2008~17年土地淨排放量(藍色)、人類活動(AFOLU;紅色)和「間接影響」(綠色)。圖中進一步細分人類活動排放和「間接影響」排放,以顯示兩類二氧化碳排放量和移除量的多寡。資料來源:IPCC土地報告,圖2.4。

根據此圖表,從2007年到2016年,土地的二氧化碳淨移除量平均為每年60億噸(以藍色長條表示)。

進一步細分人類活動排放(AFOLU;紅色加減號)可看出,人類的二氧化碳排放量超過所能夠抵消的。

2007~2016年度最大的土地二氧化碳排放是熱帶森林砍伐。(世界資源研究所的分析發現,過去三年的熱帶森林砍伐比前14年高出63%。)

從圖表也可看出,土地上的人類活動確實可以消除部分二氧化碳排放,主要是重新造林和其他類型的「綠化」,包括農業。

然而,最大的二氧化碳移除量來自「間接影響」(綠色加減號)。這是自然過程,例如由樹木和土壤的作用,以及間接的人為驅動效應,例如二氧化碳施肥效應(在前面更詳細地討論過)。報告指出,這些影響的真實程度仍然有高度不確定性,這就是圖表中畫問號的原因。

報告發現,雖然土地利用產生的二氧化碳排放量已穩定維持在「高水平」,但農業產生的甲烷排放量自1961年以來增加了1.7倍。甲烷這種溫室氣體,在100年的時間內溫室效應比二氧化碳強32倍。

根據SPM,土地甲烷排放的主要來源目前是「反芻動物和水稻種植的擴大」。

反芻動物是具有能夠消化堅韌和纖維材料(例如草)的特殊胃部細菌的動物。動物的消化過程排出甲烷。最常見的反芻畜牧動物是牛和乳牛。

根據報告第二章,目前畜牧業生產佔全球甲烷排放量的33%左右,佔農業甲烷排放的66%。亞洲是畜牧業甲烷排放最多的地區。該地區佔牲畜甲烷排放量的37%,甲烷排放量自2000年以來每年增長約2%。

同時,在水田種植作物會釋放甲烷。水田中的水「缺氧」,導致細菌分解植物質而產生甲烷。稻米甲烷排放佔農業甲烷排放約24%,其中89%的排放來自亞洲。

其他較小的陸地甲烷排放源包括動物糞便、廢棄物燃燒和北半球的泥炭地。北半球泥炭地佔全球甲烷排放量的10%左右。第二章第41頁說:「泥炭地的管理和恢復改變了甲烷與大氣的交換。管理泥炭土一般會將泥炭地從甲烷源轉變為甲烷匯。」

報告稱,自1960年代以來,農業產生的一氧化二氮排放量幾乎翻了一倍。一氧化二氮是一種壽命短暫但強效的溫室氣體,在100年的時間內,一噸一氧化二氮相當於265噸二氧化碳。世界上近三分之二的一氧化二氮排放來自農業。這些排放大部分來自氮肥的應用。自1961年以來,全球作物的肥料用量增加了9倍。(系列專文1/3,)

In-depth Q&A: The IPCC’s special report on climate change and land (1/3) by Carbon Brief

This morning in Geneva, the (IPCC) published its special report on climate change and land.

The land provides the “food, feed, fibre, fuel and freshwater” without which human society and its economy “could not exist”, the report says. This provision is under threat from rising global temperatures and “unprecedented” rates of land and freshwater exploitation in recent decades, the report warns.

The full title of the report gives an indication of the catalogue of interlinked and overlapping issues it covers, including “climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems”.

In this detailed Q&A, Carbon Brief unpacks what the report says about how climate change affects the land and vice versa, as well as other key topics such as food security, and how to tackle the overlapping challenges associated with how humans use the land.

Why did the IPCC produce this report?

The was published at the end of a week-long approval plenary held in Geneva, Switzerland. At this session, government delegates approved the 43-page “” (SPM) overview report line-by-line, culminating in a . Once the SPM was agreed, the IPCC also released the that runs to nearly 1,400 pages, plus supplementary materials.

(Following the approval of the SPM, there are some updates that need to be made to the full report to ensure it is consistent with the revised SPM. These have not yet been made and so the are subject to changes listed in a .)

The land report was originally commissioned by the IPCC at an April 2016 (pdf). A draft outline for the report was subsequently adopted at a (pdf), in March 2017.

The (pdf) of – selected in July 2017 – is made up of 107 experts from 52 countries. They have been supported by dozens of contributing authors on each chapter.

Tomorrow the will release the —the Special Report on and Land.

The report brings together the most knowledgeable experts and the most reliable science to explore the interlinkages between climate change and land usage.

— IPBES (@IPBES)

Speaking at a press conference this morning, IPCC chair explained what he viewed to be the “high level findings” of this report:

“Land is where we live. Land is under growing human pressure and is part of the solution, but land can not do it all.”

The land report is the second special report that the IPCC is due to publish this year. The second – on – is due in September this year. The IPCC also published a special report on in October 2018.

The aim of these special reports is to provide “”. They complement the main “” that the IPCC publishes every five or six years.

The new report is the first from the IPCC with land as a central focus, since the in 2000.

of the full report sets out what is included in the definition of “land”:

“The terrestrial portion of the biosphere that comprises the natural resources (soil, near surface air, vegetation and other biota, and water), the ecological processes, topography, and human settlements and infrastructure that operate within that system.”

And opens by emphasising the importance of this land to human civilisation:

“Neither our individual or societal identities, nor the world’s economy would exist without the multiple resources, services and livelihood systems provided by land ecosystems and biodiversity.”

The report says these contribute an annual value of $75-85tn to the global economy (in the year 2011, based on the value of the US dollar in 2007), putting it far in excess of the .

As the figure below – from the SPM – illustrates, humans currently appropriate close to three-quarters of the ice-free land globally. Around 12-14% of this area has been converted for growing crops (yellow); 22% is made up of managed or planted forests (blue); and 37% is grassland adopted for grazing and other uses (green). The rectangles in orange on the right-hand side indicate the land currently unused by humans.

A representation of how the global land surface is currently used. The surface tiles show the extent of current (in 2015) global land use and management. They are aggregated into five broad categories and associated uncertainty ranges. “Used land” refers to settlements, managed grassland, forest land and cropland. “Unused land” refers to barren land, unmanaged grassland and forest land. Source: Figure SPM.1c from the .

The geographic spread of land use and the “large appropriation of multiple ecosystem services and the loss of biodiversity” are “unprecedented in human history”, the report says. Human use – at varying intensities – “affects about 60-85% of forests and 70-90% of other natural ecosystems (e.g., savannahs, natural grasslands)”. And land use has caused an 11-14% drop in global biodiversity, the report notes.

Not only is human use of the land more pervasive than ever, it is set against a background of a warming climate. The report says:

Evolution of land surface air temperature (grey line) and global mean surface temperature (black line) over the period of instrumental observations. Land temperatures are taken as an average of the , , and datasets, expressed as departures from global average in 1850-1900. Global temperatures are taken as an average of the , , and datasets. Source: Figure SPM.1a from the .

This warming – along with associated changes in rainfall patterns – has “altered the start and end of growing seasons, contributed to regional crop yield reductions, reduced freshwater availability, and put biodiversity under further stress and increased tree mortality”, the report notes.

In other words: climate change is magnifying the pressures that humans are already putting on the land. But climate change is itself in part a result of the way in which humans use land, the report explains:

“Conversion of natural land, and land management, are significant net contributors to GHG [greenhouse gas] emissions and climate change, but land ecosystems are also a GHG sink.”

“It is not surprising, therefore” the report notes, that the land plays a prominent role in many of the that have been pledged under the .

But time to tackle rising global temperatures is short, the report warns:

“Confidence is very high that the window of opportunity – the period when significant change can be made, for limiting climate change within tolerable boundaries – is rapidly narrowing.”

Because of the close links between unsustainable land use and climate change, solving one is made more difficult by the other, the report says:

“Enhancing food security and reducing malnutrition, whilst also halting and reversing desertification and land degradation, are fundamental societal challenges that are increasingly aggravated by the need to both adapt to and mitigate climate change impacts without compromising the non-material benefits of land.”

This also means that tackling one can have co-benefits – and trade-offs – for the other. This is perhaps the crux of the motivation for the report. As the SPM points out:

“Many land-related responses that contribute to climate change adaptation and mitigation can also combat desertification and land degradation and enhance food security.”

But “none of these response options are mutually exclusive”, says, which means it is working out how to combine them – in a “context-specific manner” – that is most likely to “achieve co-benefits between climate change mitigation, adaptation and other environmental challenges in a cost- effective way”.

What is land degradation?

of the new IPCC report defines land degradation as:

“A negative trend in land condition, caused by direct or indirect human-induced processes including anthropogenic climate change, expressed as long-term reduction or loss of at least one of the following: biological productivity, ecological integrity, or value to humans.”

This definition encompasses temporary or permanent decline in quality of soil, vegetation, water resources or wildlife – or the deterioration of the economic productivity of the land, such as the ability to farm the land for commercial or subsistence purposes.

Table 4.1 – which runs to five pages – details the major degradation processes and their connections with climate change. It includes, for example, different types of erosion – the gradual breaking down and removal of rock and soil. This is typically through some force of nature, such as wind, rain and/or waves, but can be exacerbated by activities including ploughing, grazing or deforestation.

A loss of soil fertility is another form of degradation. This can be through a loss of nutrients, such as nitrogen, phosphorus and potassium, or a decline in the amount of organic matter in the soil. Other processes include: a loss or shift in vegetation type and cover, the compaction and hardening of the soil, an increase in wildfires, and a declining water table through excessive extraction of groundwater.

(This definition solely focuses on degradation driven – either directly or indirectly – by humans, it doesn’t include natural processes such as volcanic eruptions and tsunamis.)

The report also specifies that is land degradation in areas that are still predominantly forest, while “deforestation refers to the conversion of forest to non-forest that involves a loss of tree cover and a change in land use”.

The total amount of forest across the world declined by around 3% from 1990-2015, according to multiple lines of evidence, the reports says.

However, the change in the rate of deforestation in recent years differs between estimates, it adds, with satellite data suggesting that forest loss is accelerating and on-the-ground estimates suggesting that it is slowing down.

There is also little clarity surrounding the extent of land degradation in forests, says of the report. “The lack of a consistent definition of forest degradation also affects the ability to establish estimates of the rates or impacts of forest degradation. Moreover, the [scientific] literature at times confounds [mixes up] estimates of forest degradation and deforestation.”

“The entire spectrum of factors” that drive land degradation range from “very short and intensive events such as individual rain storms of 10 minutes removing topsoil or initiating a gully or a landslide to century scale slow depletion of nutrients or loss of soil particles”, the report says.

The long-term nature of some impacts is reflected in the fact that land degradation has “accompanied humanity at least since the widespread adoption of agriculture during Neolithic time, some 10,000 to 7,500 years ago, and the associated population increase”, the report notes.

But, of course, not all human impacts on land result in degradation, the report stresses:

“There are many examples of long-term sustainably managed land around the world (such as terraced agricultural systems and sustainably managed forests)…We also acknowledge that human use of land and ecosystems provides essential goods and services for society.”

How does climate change affect land degradation?

“Land degradation is inextricably linked to several climate variables, such as temperature, precipitation, wind, and seasonality,” the report says. This means that there are many ways in which climate change and land degradation are related, it adds:

“The linkages are better described as a web of causality than a set of cause-effect relationships.”

Climate change can affect the land through both gradual changes in temperature and rainfall patterns, as well as changes in the “distribution and intensity of extreme events”, the report notes.

There are cases where, even when climate change exerts a direct pressure on degradation processes, “it can be a secondary driver subordinated to other overwhelming human pressures”, the report says. But it identifies three processes in which climate change is the “dominant global or regional pressure”.

These are: “coastal erosion as affected by and increased storm frequency/intensity, responding to warming, and [of wildfires] responding to warming and altered precipitation regimes”.

For example, the report has “very high confidence” that erosion in coastal areas as a result of sea level rise will increase worldwide. It adds:

“In cyclone prone areas (such as the Caribbean, Southeast Asia, and the Bay of Bengal) the combination of sea level rise and more intense cyclones, and in some areas also land subsidence, will pose a serious risk to people and livelihoods, in some cases even exceeding limits to adaption,”

Climate change “not only exacerbates many of the well acknowledged ongoing land degradation processes” of managed landscapes, such as croplands and pasture, but it “becomes a dominant pressure that introduces novel degradation pathways in natural and semi-natural ecosystems”, the report says.

Warming conditions and changing rainfall patterns will also “trigger changes in land- and crop management, such as changes in planting and harvest dates, type of crops, and type of cultivars”, the report notes, “which may alter the conditions for soil erosion”.

The report also notes that “changes in extreme weather and climate have negative impacts on food security through regional reductions of crop yields”. For example, it says that on average over recent decades, around 10% of cereal production has been lost globally because of extreme weather events.

And climate change is already influencing “species invasions and the degradation that they cause by enhancing the transport, colonisation, establishment, and ecological impact of the invasive species”, the report adds.

When rainfall patterns change, it is expected to drive changes in vegetation cover and composition, “which may be a cause of land degradation in and of itself”, the report says, adding: “vegetation cover, for example is a key factor in determining soil loss through both water and wind erosion”.

The air can generally hold around of temperature rise. This means a warmer climate has the potential for more intense rainfall events, which “increase the erosive power of rainfall (erosivity) and hence increase the likelihood of water erosion”, the report says.

For example, in central India,”there has been a threefold increase in widespread extreme rain events during 1950-2015, which has influenced several land degradation processes, not least soil erosion”.

One potentially lethal consequence of increased rainfall and the accompanying land degradation is an uptick in landslides. However, the report notes that while there is “strong theoretical reason” to associate extreme rainfall with these events, there is currently not a lot of evidence linking climate change and landslides.

Heavy rainfall and flooding can also “delay planting, increase soil compaction, and cause crop losses”, the report says, and “flooding associated with tropical cyclones can lead to crop failure from both rainfall and storm surges”. In some cases, this flooding can affect yields more than drought, the report notes – particularly in tropical regions, such as India, and in some mid- and high-latitude regions, such as China and central and northern Europe.

Overall, the report has “high confidence” that the “frequency and intensity of some extreme weather and climate events have increased as a consequence of global warming and will continue to increase under medium and high emission scenarios”.

A combination of heat and drought threatens already drought-prone areas, the report warns:

“Heatwaves are projected to increase in frequency, intensity and duration in most parts of the world and drought frequency and intensity is projected to increase in some regions that are already drought prone, predominantly in the Mediterranean, central Europe, the southern Amazon and southern Africa.”

Extreme heat events can reduce photosynthesis in trees, restrict growth rates of leaves and reduce growth of the whole tree, the report notes. Forests can become less resilient to future heat stress as extreme events occur more often, the report adds, and “widespread regional tree mortality may be triggered directly by drought and heat stress (including warm winters) and exacerbated by insect outbreak and fire”.

 

On a related note, climate change is “playing an increasing role in determining wildfire regimes alongside human activity”, the report says, “with future climate variability expected to enhance the risk and severity of wildfires in many biomes such as tropical rainforests”.

Under medium and high scenarios of future GHG emissions, “global warming will exacerbate heat stress thereby amplifying deficits in soil moisture”, the report says. This will “increase the rate of drying”, the report adds, “causing drought to set in quicker, become more intense and widespread, last longer and could result in an increased global aridity”.

Changes to the planet’s vegetation cover due to climate change are likely to have , according to the report. According to , if temperatures rise by 2C above pre-industrial levels, two thirds of key biodiversity areas are projected to remain intact, whereas only a third will at 4.5C. In regions where plants decline, land degradation is expected to occur as vegetation provides a vital safeguard against erosion.

The chart below, from the of the report, illustrates how the level of risk to different aspects of the land surface varies with rising temperature. For example, the risk to water scarcity in drylands (left-most bar) increases from “moderate” (yellow shading) in the present climate to “high” (red) in a 2C warmer climate and “very high” (purple) with 3C of warming.

The chart shows that the risks to permafrost (third bar from the right) and food supply stability (right-most bar) are expected to increase particularly rapidly with rising temperatures.

Chart showing the risk of different land system impacts when faced with different levels of temperature rise since pre-industrial times. Source: Figure SPM.2a from the IPCC land report.

The report does, however, stress that some aspects of climate change can improve the condition of the land. One example is “”, where higher levels of CO2 in the atmosphere bolsters plant growth, the report says:

“Increasing CO2 levels in the atmosphere is a driver of land improvement even if the net effect is modulated by other factors, such as the availability of nitrogen and water.”

However, as a indicates, the benefits for tree growth could be restricted where soil nutrients are limited. Other benefits could include longer growing seasons in thanks to warmer shoulder seasons of spring and autumn – assuming they are not affected by summer droughts – and increasing levels of atmospheric CO2 improving how efficiently trees can use water.

Despite some benefits to land as the climate changes, the report warns that “negative impacts dominate”, adding that these have already been documented and “are predicted to increase”.

The report also looks at the evidence for links between land degradation and human-caused climate change – a field of research known as “” that is typically applied to extreme weather events.

Proving a definitive climate change-related influence on land degradation is “extremely challenging”, the report says. This is because degradation is a “complex phenomenon often affected by multiple factors”, related to climate, ecology, land type, and management practices.

“There is not much research on attributing land degradation explicitly to climate change,” the report notes, “but there is more on climate change as a threat multiplier for land degradation”.

The most important direct links between climate change and land degradation are the result of increasing temperatures, changing rainfall patterns, and intensification of rainfall, the report says.

Scientists have shown that each of those links is being affected by human-cause greenhouse gases. , for example, has previously explained how humans emissions and activities have caused around 100% of the warming observed since 1950. And the concluded that human-induced global warming has already caused an increase in the frequency, intensity and/or amount of heavy precipitation events at the global scale. Moreover, “the intensification of the hydrological cycle as a result of human-induced climate change is well established”, the land report says.

The report concludes that there is “high confidence” and “robust evidence” that “rainfall changes attributed to human-induced climate change have already intensified drivers of land degradation, but attributing land degradation to climate change is challenging because of the importance of land management.”

In addition, the report says: “[S]ince climate change exacerbates most degradation processes it is clear that unless land management is improved, climate change will result in increasing land degradation.”

How does the land contribute to climate change?

The land plays a key role in storing greenhouse gases. From 2008-17, the land absorbed 30% of the world’s greenhouse gas emissions, according to the report.

The land takes in CO2 from the atmosphere when trees and other types of vegetation carry out photosynthesis – the process needed for plant growth. In this process, plants use CO2 to build new materials such as shoots, roots and leaves. This means that, as long as plants are alive, they can act as long-term “sinks” of CO2. Scientists estimate that up to of carbon stored in the land is held by the world’s forests.

Another major way that the land holds carbon is through its soils, which typically gain carbon through plant material, crop residues and animal manure. The top metre of the world’s soils is thought to contain as the entire atmosphere.

The report says that the ability of the land to absorb greenhouse gases is currently being aided by “increasing atmospheric CO2 concentration [and] a prolonged growing season in cool environments”. To read more about these issues, please see: “?”

Though the land acts as a major store of carbon, it can also be a greenhouse gas emitter.

The leading cause of greenhouse gas release from the land comes from human activity on its surface. The report finds that around 23% of global greenhouse gas emissions released from 2007-16 came from agriculture, deforestation, degradation and other types of land use.

The major driver of CO2 release is deforestation and other types of vegetation loss, according to the report, whereas the major driver of methane and emissions is agriculture.

The chart below, taken from the SPM, gives a picture of how emissions of all three greenhouse gases have changed since 1961. The chart shows (1) CO2 emissions from forestry and other land-use change, (2) methane emissions from livestock and (3) nitrous oxide emissions from agriculture.

Greenhouse gas emissions from 1961-2018 when compared to 1961 levels. The chart shows: (1) CO2 emissions from forestry and other land-use change; (2) methane emissions from livestock; and (3) nitrous oxide emissions from agriculture. Source: Adapted from figure SPM.1 of the IPCC land report.

The chart shows that CO2 emissions from land use decreased in the 1960s before stabilising at “high levels” in the 21st century. From 2008 to 2017, CO2 emissions from land-use change totalled around 1.5bn tonnes a year, the report says.

Though land-use emissions are at “high levels”, the land is still a net carbon sink, the report says. This means that the land currently takes in more CO2 than it emits.

This is because emissions from human land use are currently being more than offset by land processes that remove CO2 from the atmosphere. An idea of this is given in the chart below, which is taken from page 30 of .

On the chart, the impact of human activity (agriculture, forestry and other land use, AFOLU) on land emissions is shown in red, while the impact of natural processes and “indirect” human influence is shown in green. Blue shows the overall emissions from land when both factors are considered.

Net emissions from the land (blue), human activity (AFOLU; red) and “indirect effects” (green) from 2008-17. The chart shows a further breakdown of human activity emissions and “indirect effect” emissions to show the balance between CO2 emissions and removals for both categories. Source: Figure 2.4 from the .

The chart shows that the “net” removal of CO2 by the land totalled an average of 6bn tonnes a year from 2007-2016. (This is shown by the blue bar.)

A further breakdown of human activity emissions (AFOLU; red pluses and minuses) shows that people are currently causing more CO2 emissions than they are able to offset.

The largest source of CO2 losses from 2007-16 was tropical deforestation, the report says. ( from the found that tropical deforestation in the past three years was 63% higher than in the preceding 14 years.)

 

Human activity on land does account for some CO2 removal, the chart shows. This is mainly due to reforestation and other types of “” including agriculture, the report says.

However, the largest CO2 removals are carried out by “indirect effects” (green pluses and minuses). These are the natural processes, such as those provided by trees and soils, as well as the “indirect” human-driven effects, such as the CO2 fertilisation effect (discussed in more ). There is still a large degree of uncertainty surrounding the true extent of these effects, the report notes, which is why question marks are included on the chart.

While CO2 emissions from land use have stabilised at “high levels”, methane emissions from agriculture have increased by 1.7 times since 1961, the report finds. Methane is a greenhouse gas that is more potent than CO2 over a 100-year time period.

The major sources of methane emissions from land are currently “ruminants and the expansion of rice cultivation”, according to the SPM.

“” are animals that have specialised stomach bacteria capable of digesting tough and fibrous material such as grass. The digestive process causes the animals to belch out methane. The most commonly reared ruminants are beef and dairy cows.

Livestock production is currently responsible for around 33% of global methane emissions, according to of the report, and for 66% of agricultural methane.

Asia is the region that produces the most methane from livestock production, the report adds. The region accounts for 37% of livestock methane emissions and gases from the region have been growing at about 2% every year since 2000, the report says.

Rice farming, meanwhile, causes methane release when the crop is grown in flooded paddies. In flooded conditions, water can become “” – depleted of oxygen – which causes the bacteria that break down plant matter to .

Rice emissions are responsible for about 24% of agricultural methane emissions – and 89% of emissions come from Asia, the report says.

Other smaller sources of land methane emissions include animal manure, waste burning and peatlands in the northern hemisphere. Northern peatlands contribute around 10% of global methane emissions, says page 41 of :

“Peatland management and restoration alters the exchange of methane with the atmosphere. Management of peat soils typically converts them from methane sources to sinks.”

Nitrous oxide emissions from agriculture have almost doubled since the 1960s, the report says. Nitrous oxide is a short-lived but potent greenhouse gas; one tonne of nitrous oxide is equivalent to over a 100-year time period.

Nearly two-thirds of the world’s nitrous oxide emissions come from agriculture, the report says. Most of these emissions come from the application of nitrogen fertiliser, the report says. Fertiliser application on crops has increased nine-fold worldwide since 1961, it adds.

※ 全文及圖片詳見:()

作者

如果有一件事是重要的,如果能為孩子實現一個願望,那就是人類與大自然和諧共存。

於特有生物研究保育中心服務,小鳥和棲地是主要的研究對象。是龜毛的讀者,認為龜毛是探索世界的美德。

本站聲明:網站內容來源於https://e-info.org.tw/,如有侵權,請聯繫我們,我們將及時處理

【其他文章推薦】

※選購空壓機需注意八大事項 !

※飲用桶裝水到底安不安全? 破解錯誤迷思!

示波器探測執行效能最佳化的8大秘訣

※買不起高檔茶葉,精緻包裝茶葉罐,也能撐場面!

※各款電動堆高機價格?

微晶玻璃煎台升溫實驗- YouTube介紹

貨梯使用安全與保養

據報,重慶市近日印發的重慶市開展林長制試點方案提出

據報,重慶市近日印發的重慶市開展林長制試點方案提出,從2019年7月至2020年6月,在長江三峽庫區和周邊山脈涉及的萬州、巫山、石柱等區縣開展林長制試點。

重慶市林業局局長沈曉鍾表示,長江三峽庫區林長制試點的主要任務是整治涉及森林的違法違規突出問題,嚴厲打擊非法佔用林地和破壞森林、濕地、野生動植物資源等行為。

同時,林長制還將推進三峽庫區國土綠化,加強對古樹名木的全面保護,加強重點區域生物多樣性保護,增加森林資源監測、森林保險等方面的資金投入。

除三峽庫區,重慶林長制試點還包括主城區週邊的四座主要山脈。主城區週邊林長制試點的主要任務是解決違法建設亂象、建設山地生態公園等。

本站聲明:網站內容來源於https://e-info.org.tw/,如有侵權,請聯繫我們,我們將及時處理【其他文章推薦】

※幫你考照過關,堆高機裝卸操作教學影片大公開 !

※高效率洗滌塔活性碳設備,能去除多少有機溶劑?

※飲用桶裝水到底安不安全? 破解錯誤迷思!

※票選推薦煮婦最愛手壓封口機,省荷包不犧牲品質

※各種升降平台款式?

APV產品要用於食品加工可在哪購買?

※哪裡買的到省力省空間,方便攜帶的購物推車?

利奇馬颱風直撲中國,隨著暴風圈逐漸遠離,山東青島的西海岸海軍公園海灘上

利奇馬颱風直撲中國,隨著暴風圈逐漸遠離,山東青島的西海岸海軍公園海灘上,卻出現綿延了數公里的牡蠣,吸引許多民眾帶著麻布袋來爭相挖撿。

根據青島早報報導,颱風過後有數千名青島市民聚集在海軍公園東側的海灘上,盡是來撿拾海鮮的民眾,還能看到有人扛著一袋袋的麻布袋離開。根據報導,民眾表示一夜之間海灘上就冒出許多牡蠣,不到一個小時就可以撿一百多斤(約50公斤)的牡蠣,且這些牡蠣普遍都滿大顆,有的長度甚至接近30公分。

當地漁民表示,牡蠣的收穫季節一般在冬季和春季,而這些被打到岸上的牡蠣推測是野生在深海裡的,因生長期較長,特點是肉肥味鮮。由於利奇馬颱風的大風使得這些原本在深海裡的「寶貝」被送到海灘上,可說是颱風帶來的「小確幸」。

但青島疾控中心的專家也提醒,颱風容易造成環境衛生條件惡化,造成腸道傳染病傳播風險,引起細菌性痢疾、霍亂、傷寒和副傷寒等疾病,因此應盡量不要進食未經煮熟的海(水)產品。

本站聲明:網站內容來源於https://e-info.org.tw/,如有侵權,請聯繫我們,我們將及時處理【其他文章推薦】

※選擇示波器的10 項考量因素

※專業客製化禮物、贈品設計,辦公用品常見【L夾】搖身一變大受好評!!

※全自動飲水機與一般飲水機差異在哪?

※哪裡買的到省力省空間,方便攜帶的購物推車?

※如何知道自已的電腦cpu支不支持AVX指令集?

※票選推薦煮婦最愛手壓封口機,省荷包不犧牲品質

※台灣區spx集團已成立多久?

根據中國國家氣候中心14 日評估,超強颱風利奇馬是2019年以來登陸中國的最強颱風

根據中國國家氣候中心14 日評估,超強颱風利奇馬是2019年以來登陸中國的最強颱風,其陸上滯留時間為1949年以來第六長,風雨綜合強度指數為1961年以來最大。據悉,利奇馬至今已經造成56人死亡,14人失蹤。

國家氣候中心指,利奇馬8月7日加強為超強颱風,10日在浙江省溫嶺市沿海登陸,登陸時中心附近最大風力16級(52公尺/秒,超強颱風級),是1949年以來登陸浙江颱風中第三強。

利奇馬登陸浙江後一直北上,先後影響浙江、福建、江蘇、上海、安徽、山東、河南、河北、天津、遼寧、吉林等省市。評估結果顯示,利奇馬造成的中等及以上颱風災害風險覆蓋面積達24.8萬平方公里。

據應急管理部統計,截至今日,利奇馬共造成1,402.4萬人受災,56人死亡,14人失蹤,1.5萬間房屋倒塌,農作物受災面積113.7萬公頃,其中絕收面積9.35萬公頃,直接經濟損失515.3億元(人民幣,下同)。利奇馬造成的直接經濟損失是2000年以來第二多,僅次於2013年的1323號颱風「菲特」(631.4億元)。

本站聲明:網站內容來源於https://e-info.org.tw/,如有侵權,請聯繫我們,我們將及時處理【其他文章推薦】

※各大品牌中古空壓機情報站

※選用哪種桶裝水,外宿露營超方便?

※連續塑膠射出成型不良品原因及改善對策 !

※高價位跟低價位的示波器又有何差異?

※找尋中部室外倉儲、保稅倉庫、運輸物流一條龍服務

※Anhydro噴霧式乾燥機原理?

中國石化14日發布消息稱,中國石化加大油氣勘探開發力度

中國石化14日發布消息稱,中國石化加大油氣勘探開發力度,在四川新增天然氣探明儲量約921億立方公尺,相當於一個千億方大氣田的規模。截至7月底,中國石化在四川累計生產天然氣超1,200億立方公尺,探明天然氣儲量1.2兆億立方公尺,天然氣年生產能力120億立方公尺。

中國石化勘探分公司總經理郭旭昇介紹說,元壩氣田是全球首個超深層生物礁大氣田,採取了「立體勘探」方式。之前元壩氣田累計提交探明儲量2,300多億立方公尺,主要集中在地下7,000公尺左右的深層;此次新增超過400億立方公尺的儲量,主要集中在地下3,000公尺至5,000公尺的中淺層。目前,元壩氣田的三級儲量(探明儲量、預測儲量、控制儲量)已有1.1萬億立方公尺。

中國石化西南油氣分公司總經理甘振維表示,此次新增近千億立方公尺探明儲量,說明幾大氣田天然氣資源豐富,勘探潛力巨大。據測算,近千億立方公尺探明儲量,可建成20億立方公尺年產能,滿足1000萬個家庭的用氣需求。

本站聲明:網站內容來源於https://e-info.org.tw/,如有侵權,請聯繫我們,我們將及時處理【其他文章推薦】

※噴霧洗滌塔實際應用案例分享

示波器鮮為人知的使用技巧?

※客製專屬滑鼠墊、可愛造型L夾L型資料夾、透明證件套、手提袋,專業印刷設計廠商!  

※使用真空封口機常見問題?

※高價位跟低價位的示波器又有何差異?

※特殊造型滑鼠墊去哪買?

※如何知道自已的電腦cpu支不支持AVX指令集?

報告怎麼看土地沙漠化?

IPCC土地報告將沙漠化定義為「發生在乾旱、半乾旱和乾次濕地區(統稱為乾地)的土地劣化」,由許多因素造成,包括人類活動和氣候自然變化。

因此,報告指出,儘管叫做沙漠化,土地沙漠化不等於「沙漠擴張」,而是「代表發生在乾地的所有形式和程度的土地劣化」。

「乾地」一詞包括全世界被定義為乾次濕、半乾旱、乾旱或超乾旱的地區,在下面的IPCC地圖中以黃色、橙色和紅色表示。

乾旱地區的地理分佈,以為基礎。AI的分類為:潮濕(灰色陰影)AI> 0.65、乾次濕(黃色)0.50 <AI≤0.65、半乾旱(淺橙色)0.20 <AI≤0.50,乾旱(深橙色)0.05 <AI≤ 0.20、超乾旱(紅色)AI <0.05。資料來源:IPCC土地報告,圖3.1。

全球有30億人口住在乾地,約佔全球人口38%。乾地人口最多的是南亞,其次是撒哈拉以南非洲和拉丁美洲。整體而言,乾地上約90%的人口生活在發展中國家。

乾地人口極易受到沙漠化和氣候變遷的影響,因為他們的生計主要依賴農業,而農業是極易受氣候變遷影響的行業。

驅動沙漠化的因素相當程度能反映土地劣化的原因。然而,由於降雨稀少、規律變化以及土壤肥沃度差,乾地特別容易受到土地劣化的影響。

追踪全球沙漠化的範圍和程度是很棘手的工作,因為沒有單一的方法可定義或量化之。估算出的數字也會因缺少資訊和/或不可靠的資訊而大不相同。

評估沙漠化程度主要透過三種方法:專家判斷、植被變化的衛星圖像,以及生物物理模型。這三個方法一起使用能提供相對全面性的評估,但沒有一個足以掌握整個情況。

儘管如此,報告指出,過去幾十年來,部分乾地沙漠化範圍和強度增加了。乾地的暖化趨勢是全球平均水準的兩倍。由於乾旱頻率增加導致生長季節土壤水分減少,部分溫帶乾地將轉變為亞熱帶乾地。

報告相當肯定,沙漠化的風險將因氣候變遷而增加。例如,在全球暖化1.5°C、2°C和3°C的「共享社會經濟途徑SSP2」(「中間路線」)下,生活在乾地並面臨缺水壓力、乾旱強度和棲息地劣化等風險的人口分別將達到9.51億、11.5億和12.9億人。

編按:共享社會經濟途徑(Shared Socioeconomic Pathways,SSPs)是IPCC近期所研發的社會經濟情境描述方式,描述五種未來世界在人口、經濟增長、能源需求、社會平等和其他因素方面的差異情境,分別以SSP1~SSP5描述。

報告稱,全球暖化將減少乾地作物產量,可能會減少當地的糧食和飼料產量。如果農業生產力沒有提高,食物浪費和損失沒有減少,要滿足不斷增長的糧食需求可能需要將農田擴大到更邊緣的地區。

乾地土壤侵蝕的主因是農田擴張,這可能進一步導致沙漠化。農業生產力下降、糧食價格變化加上極端天氣事件增加可能會加劇部分旱地人口的貧困狀況。「撒哈拉以南非洲和南亞乾地的貧困現象越來越集中,總人口中分別有41%和12%生活在極度貧困中。」

氣候變遷也可能在某些地區刺激遷移。雖然人口外移民短期內可減輕土地壓力,但由於農村勞動力供應減少和/或農村工資增加,可能增加勞動密集型永續土地管理的成本。

與其他形式的劣化一樣,沙漠化會影響氣候變遷,也會受到氣候變遷的影響。下圖總結了其中部分的反饋關係,紅色箭頭表示正面效果,藍色表示負面效果。

例如,植被的減少(圖中間下方)可能使土壤更容易被侵蝕,增加沙塵暴的可能性(右上)。報告稱,這種沙塵的影響會降低當地(從右到左)降水量,進一步加劇沙漠化。

沙漠化影響氣候的主要途徑的。注意:箭頭的顏色表示正(紅色)或負(藍色)效果,或兩者(黑色)。實線箭頭是直接效果,虛線箭頭是間接效果。資料來源:IPCC土地報告,圖3.8。

報告還詳細介紹了一系列「熱點」,以提供沙漠化相關經驗和教訓。這些案例研究包括透過綠牆、入侵植物物種、超乾旱地區的綠洲和流域綜合管理探討土壤侵蝕、植樹造林和森林復育的五個主題。

其中一個案例是撒哈拉大綠牆和薩赫勒倡議。該計畫目的是透過造林和相關計畫,恢復從大西洋沿岸塞內加爾到紅海沿岸厄利垂亞劣化的乾旱地景,減少生物多樣性的喪失並支持當地社群。

然而,雖然部分國家正在實行該倡議,報告警告,如果沒有大量額外資金挹注,很可能難以達成目標。

氣候變遷導致的土地劣化有哪些更廣泛的影響?

,土地劣化已經對全世界人口的生計產生影響,尤其是生活在脆弱和貧困地區的人們。

然而,作者在中明確指出,很難確定氣候變遷在其中扮演的角色:「確立氣候相關的土地劣化對貧困和生計的影響非常不容易,因為牽涉多種社會、政治、文化和經濟因素的相互作用,例如市場、技術、不平等、人口增長,每種因素都與社會生態系統的反應方式相互作用,也形塑著社會生態系統。」

在審視這些問題時,很難將氣候與其他土地劣化因素隔離開來。這個領域的大多數研究都探討了小農的生計問題。由於土壤和降雨變化,人們普遍猜測貧困與氣候變遷之間存在某種潛在關聯,但目前尚缺乏證據。

此外,雖然有研究估計世界上超過2/5的窮人生活在土地劣化地區,但這些資料信度不足,需要更多研究。

報告也指出,氣候變遷經常被視為土地劣化和貧困的風險乘數。此外,報告同意在全世界多個貧窮地區,貧困、土地劣化以及面對與氣候變遷相關極端氣候事件的脆弱性都是相輔相成的。

SPM指出,消除貧困與因應氣候變遷、沙漠化、土地劣化和糧食安全之間存在綜合效應。

更具爭議的是氣候相關土地劣化與遷移和衝突之間的關係。當人們因環境變化而陷入貧困或被剝奪生計時,一種適應方式是遷移到另一個地區,可能是境內或境外。理論上這可能增加遷入地的壓力。例如,研究顯示,與氣候有關的災害可能是導致暴力衝突的一個因素。

雖然氣候引起的遷移與衝突和土地劣化之間的關係還需要更多證據,但SPM指出:「氣候變遷會放大環境導致的境內與跨境遷移,反映遷移有多重因素,也有其適應措施。極端天氣和氣候或緩慢發生的事件可能導致遷移、食物鏈中斷、生計受威脅,並加劇衝突壓力。」

報告舉了一些類似案例。例如,在瓜地馬拉和肯亞,一般認為土壤品質下降是人民往遠方遷徙以尋找收入的主因。

同時,部分學者認為盧安達和蘇丹的衝突與土地劣化有關,也有學者認為氣候變遷是武裝衝突的「弱預測因素」。因此,報告認為這個問題相當程度上尚無定論:「探討氣候變遷-土地劣化主因之一-與衝突的關係的研究有許多相左的結果,而且氣候變遷導致的土地劣化究竟是導致衝突還合作仍然不明。」

報告認為,氣候變遷導致的土地劣化究竟是導致衝突還合作仍然不明。

氣候變遷如何影響糧食安全?

報告的另一個重點是氣候變遷對糧食的​​影響。SPM表示,氣候變遷已經影響了全世界許多地區的糧食安全。報告說,暖化會直接影響作物生產,進而影響糧食供應。

「可觀察到的氣候變遷已經透過暖化改變降水模式以及更頻繁的極端氣候事件影響糧食安全。氣溫升高正影響高緯度地區的農業生產力,提高了部分作物(玉米、棉花、小麥、甜菜)的產量,而低緯度地區部分作物(玉米、小麥、大麥)的產量則正在下降。

氣候變遷對作物產量的影響因地而異。

在亞洲,包括中國北方等地區,暖化和農業創新等因素導致水稻產量增加。同時,以印度為主的作物產量研究發現,1981年到2009年,暖化使小麥產量減少了5.2%。

近年整個非洲大陸的主要作物如玉米、小麥、高粱和水果的產量都有所下降。喀麥隆的撒哈拉地區營養不良現像日益嚴重,部分原因是氣候變遷,惡劣的氣候條件導致極度乾旱,影響農業生產。

聖嬰現像等氣候自然變化也可能對糧食供應產生深遠影響。發生在2015年末至2016年初的強烈聖嬰現象導致撒哈拉地區區域性降水變化。衣索比亞嚴重乾旱,大面積的作物歉收,超過1000萬人需要糧食援助。

薩赫爾地區的乾地,此處位於非洲北部撒哈拉沙漠和中部蘇丹草原地區之間。(CC BY-NC-ND 2.0)

報告稱,氣候變遷對糧食產量的影響將在未來幾十年內惡化。

以下地圖摘自第五章第27頁,顯示在嚴重的氣候變遷情境下(RCP8.5,即各國未減碳、CO2濃度達1370ppm的高排放情境),2070~2099年間預期產量與1980~2010年的比較。圖上顯示玉米、小麥、大豆和稻米的變化。在圖中,紅色顯示產量下降50%,而藍色顯示增加50%。

值得注意的是,此預測納入了二氧化碳施肥效應和氮含量壓力的潛在影響。

在嚴重氣候變遷情境(RCP8.5)下,2070~2099年間,玉米、小麥、水稻和大豆產量中位數與1980~2010年的比較。紅色表示產量下降50%,藍色表示增加50%,灰色表示未種植作物的區域。資料來源:IPCC土地報告,圖5.4。

該地圖顯示,如果未來氣候變遷非常嚴重,南美洲和撒哈拉以南非洲部分地區可能會發生嚴重的小麥減產。

除了影響產量外,氣候變遷還可能改變糧食品質。SPM指出,大氣中二氧化碳濃度升高會降低作物的營養成分。報告稱,可能受二氧化碳含量上升影響的營養成分包括蛋白質和鋅。

氣候變遷影響糧食的另一種方式是增加病蟲害。報告發現,有有力證據可證實氣候變遷已經影響了病蟲害的發生。

未來的氣候變遷也可能影響畜牧業生產。沙漠化可能影響牛隻的飼養,熱浪的增加可能直接影響動物的發病率、死亡率和痛苦。

報告稱,糧食供應的變化可能透過改變食品價格影響糧食取得和穩定性。

由於氣候變遷,2050年穀物價格可能會上漲1-29%,導致糧食價格上漲、糧食危機和飢餓風險增加。糧食價格上漲尤其威脅著全世界的窮人。「減產會透過減少高營養作物供應和適應性行為來影響窮人的營養攝取,適應性行為指的是改吃韌性較強但是營養價值較低的糧食……在富裕國家,貧窮通常與高熱量但低營養成分有關,如不良飲食、肥胖、過重和其他相關疾病。」

成都的稻田。(CC BY-NC-ND 2.0)

社會經濟變化對未來土地劣化有多大影響?

報告強調,世界各地的社會經濟變化會決定地球的未來,且預測往往顯示,社經變化對土地利用模式的影響大於氣候變遷。

氣候變遷不僅導致氣溫上升,還會影響人類的消費模式、土地管理和人口變化。SPM中簡要描述:「對糧食、飼料和水的需求增加、資源密集型消費和生產需求增加、農業產量技術進步有限的途徑,導致乾地水資源短缺、土地劣化和糧食不安全的風險增加。 」

這裡的「途徑」指的是IPCC報告中的「共享社會經濟途徑」(SSPs),用來瞭解全球社會、人口統計學和經濟學的變化將如何與氣候變遷相互作用。

SSP共有五個,土地報告主要關注前三個,每個都提供了截然不同的結果。(去年明每種情境的含義;也可參閱台大風險社會與政策研究中心)

SSP1的特點是人口增長率低,本世紀末地球上只有70億人口。高收入,整體不平等減少,有效率的土地利用,以及較少的肉類消費和糧食浪費。

SSP2是過去消費和技術進步趨勢的延續,中等人口增長,2100年達到90億。

SSP3的人口幾乎是SSP1的兩倍,2100年為130億。此途徑的特點是低收入、資源密集型消費模式、貿易壁壘和技術變革速度緩慢。

這三個社經途徑以及相對的人口變化、消費模式和其他因素的變化,對未來的土地使用方式差異很大。

下圖顯示21世紀地球表面用於森林(藍線和陰影區域)、生質能源作物(紫色)、自然土地(紅色)、農田(黃色)、牧場(綠色)與2010年相比的增加(正數)和減少(負數)。

從左到右,每個圖表顯示本世紀末暖化限制在1.5C的情況下土地利用將如何變化。最左邊的圖表顯示了SSP1,中間是SSP2,右側是SSP5(資源密集、依賴化石燃料的途徑)。

升溫1.5°C的情況下,與2010年相比,用於耕地(黃色)、牧場(綠色)、生質能作物(紫色)、森林(藍色)和自然土地(紅色)的變化。左:SSP1。中間:SSP2,右:SSP5。資料來源:IPCC土地報告,SPM4A圖。

不同社經途徑下不同的土地利用優先順序變化,將反過來影響溫度上升導致的風險。

下圖顯示SSP1和SSP35這兩種截然不同的途徑,會如何影響與氣候相關的風險。

例如,即使氣溫上升至3°C(依照目前世界各國自主減排承諾落實狀況,將會升溫3°C),SSP1也只會帶來「中等風險」的沙漠化(下圖中最左邊一欄) 。

相反地​​,在SSP3情境下,沙漠化的風險在升溫1.2°C至1.5°C之間就變成「高」,在3°C之下接近「非常高」(左起第二個)。與土地劣化有關的其他風險也是類似的趨勢,例如火災和沿海洪水。

不同社經途徑(SSP1和SSP3)如何影響氣候相關風險。顏色代表影響/風險水準,紫色表示「非常高」的風險和「顯著的不可逆性」,氣候相關的危害和有限的適應能力,白色表示沒有可偵測到和可歸因於氣候變遷的影響。字母表示調查結果的信心水準(「L」代表低,「M」代表中等,「H」代表高)。資料來源:IPCC土地報告,圖SPM.2B。

作物產量變化和糧食供給危機已經被歸因於氣候變遷,但這些風險再次受到某些社經情境的影響。

一項研究估計,SSP1之下,升溫2.5°C時,將有1億人面臨氣候相關飢餓風險,而SSP3之下,升溫3°C時,將使超過8億人受影響。

作者的結論是,必須「以整體性的方式」解決貧困、土地劣化和排放的惡性循環,以產生如SSP1的永續發展,並避免最壞的後果。(系列專文2/3,)

In-depth Q&A: The IPCC’s special report on climate change and land (2/3) by Carbon Brief

What does the report say about desertification?

The IPCC land report defines desertification as “land degradation in arid, semi-arid, and dry sub-humid areas, collectively known as drylands, resulting from many factors, including human activities and climatic variations”.

Therefore, despite its name, desertification is not “equated to desert expansion”, the report notes, but “represents all forms and levels of land degradation occurring in drylands”.

The term “drylands” encompasses parts of the world that are defined as dry sub-humid, semi-arid, arid or hyper-arid – indicated by the yellow, orange and red shading in the IPCC map below.

(For a detailed primer on desertification, published an explainer earlier this week.)

Geographical distribution of drylands, based on the (AI). The classification of AI is: Humid (grey shading) AI > 0.65, dry sub-humid (yellow) 0.50 < AI ≤ 0.65, semi-arid (light orange) 0.20 < AI ≤ 0.50, arid (dark orange) 0.05 < AI ≤ 0.20, and hyper-arid (red) AI < 0.05. Source: Figure 3.1 from the .

Drylands are home to approximately 38% of the global population, the report says – around three billion people. The largest number of people living in drylands are found in South Asia, followed by sub-Saharan Africa and Latin America. Overall, “about 90% of the population in drylands live in developing countries”, the report notes.

Dryland populations are “highly vulnerable to desertification and climate change”, the report notes, because their livelihoods “are predominantly dependent on agriculture; one of the sectors most susceptible to climate change”.

The drivers of desertification mirror those of land degradation more widely – – however, drylands are particularly vulnerable to land degradation because of scarce and variable rainfall as well as poor soil fertility.

Tracking the global extent and severity of desertification is particularly tricky because there is no single way to define or quantify it. Estimates also tend to “vary greatly due to missing and/or unreliable information”, the report says.

There are three main three methods of assessing the extent of desertification – expert judgement, satellite images of vegetation change and biophysical models. Together they “provide a relatively holistic assessment”, the report says, “but none on its own captures the whole picture”.

Nonetheless, “there is high confidence that the range and intensity of desertification has increased in some dryland areas over the past several decades”, the report says. “Warming trends over drylands are twice the global average,” it adds, and “some temperate drylands are projected to convert to subtropical drylands as a result of an increased drought frequency causing reduced soil moisture availability in the growing season”.

The report also has “high confidence” that “risks from desertification are projected to increase due to climate change”. For example, under the (“Middle of the Road”) at 1.5C, 2C and 3C of global warming, the population living in drylands and exposed to risks such as water stress, drought intensity and habitat degradation is projected to reach 951 million, 1.15 billion and 1.29 billion people, respectively.

Global warming “is projected to reduce crop yields across dryland areas, potentially reducing local production of food and feed”, the report says. Without concomitant increases in agricultural productivity and reductions in food waste and loss, meeting growing food demand will thus likely require expansion of farmland into ever-more marginal areas.

As a primary driver of soil erosion in drylands is cropland expansion, this risks further contributing to desertification, the report warns. It adds that the combination of agricultural productivity declines, changes in food prices and increases in extreme weather events is likely to exacerbate poverty for some dryland populations.

“There is an increasing concentration of poverty in the dryland areas of sub-Saharan Africa and South Asia,” the report notes, “where 41% and 12% of the total populations live in extreme poverty, respectively.”

Climate change is also likely to “provide an added incentive ” in some places, the report says. And while outward migration could reduce pressure on the land in the short-term, “this can increase the costs of labour-intensive SLM [sustainable land management] practices due to lower availability of rural agricultural labour and/or higher rural wages”.

As with other forms of degradation, desertification can both influence climate change and be influenced by it. The figure below summarises some of these feedbacks, with positive effects shown by red arrows and negative effects by blue.

For example, a decline in vegetation (below centre in the figure) can leave the soil more at risk of erosion, increasing the likelihood of sand and dust storms (top right). The effects of this dust “would tend to decrease precipitation” in the local climate (top, right to left), the report says, thus further reinforcing desertification.

Illustration of the main pathways through which desertification can feedback on climate. Note: The colour of the arrows indicate a positive (red) or negative (blue) effect, or both (black). Solid arrows are direct while dashed arrows are indirect. Source: Figure 3.8 from the .

The report also details a series of “hotspots” to “present rich experiences and lessons learnt” on desertification. These case studies cover the five topics of soil erosion, afforestation and reforestation through “green walls”, invasive plant species, oases in hyper-arid areas, and integrated watershed management.

One example given is the . This project aims to “restore Africa’s degraded arid landscapes, reduce the loss of biodiversity and support local communities” through “establishing plantations and neighbouring projects…from Senegal on the Atlantic coast to Eritrea on the Red Sea coast”.

However, although the initiative is underway in several countries, “the achievement of the planned targets is questionable and challenging without significant additional funding”, the report warns.

What are the wider impacts of climate change-driven land degradation?

Research land degradation is already having an impact on the livelihoods of people around the world, particularly those living in vulnerable and poverty-stricken regions.

However, in the authors are clear that it is difficult to identify the fingerprints of climate change in these processes:

“Unravelling the impacts of climate-related land degradation on poverty and livelihoods is highly challenging. This complexity is due to the interplay of multiple social, political, cultural, and economic factors, such as markets, technology, inequality, population growth, each of which interact and shape the ways in which social-ecological systems respond.”

When examining these issues, the report says it has been difficult to isolate climate as a factor from other drivers of land degradation.

Most studies in this area have examined livelihoods of small-scale farmers, and while there is widespread speculation about “potential links” between poverty and climate change due to changes in soil and rainfall, the evidence is currently lacking, it says.

Furthermore, while one study estimated that more than two-fifths of the world’s poor live in degraded areas, the report says there is “low confidence” in such figures and notes a need for more research in this area.

However, the report also states that climate change is “frequently noted as a risk multiplier” for both land degradation and poverty. In addition, it acknowledges that in many of the poorest parts of the world, poverty, land degradation and vulnerability to extreme events linked to climate change all go hand-in-hand.

The SPM notes there are “synergies” between poverty eradication and efforts to tackle climate change, , land degradation and food security.

More contentious is the link between climate-related land degradation and migration and . When people are pushed into poverty or have their livelihoods stripped as a result of changes in their environment, one adaptation option is to move to another area – this can be internally or across borders. In theory, this can then . , for example, that climate-related disasters can be a contributing factor to violent conflict.

While the authors note there is still a need for more evidence about the links between climate-induced migration and conflict due to land degradation, the SPM states:

“Changes in climate can amplify environmentally induced migration both within countries and across borders, reflecting multiple drivers of mobility and available adaptation measures. Extreme weather and climate or slow-onset events may lead to increased displacement, disrupted food chains, threatened livelihoods, and contribute to exacerbated stresses for conflict.”

The main report cites a handful of examples of such processes. For example, in and , declining soil quality has been widely cited as a driver behind migrants heading farther afield to generate income.

Meanwhile, conflicts in both and have been linked by some scholars to land degradation, whereas others have found climate change is a “weak predictor” for armed conflict. As such, the report finds that the evidence from this area is largely inconclusive:

“Studies addressing possible linkages between climate change – a key driver of land degradation – and the risks of conflict have yielded contradictory results and it remains largely unclear whether land degradation resulting from climate change leads to conflict or cooperation.”

How can climate change affect food security?

Another major focus point in the report is the ways in which climate change can affect food.

Climate change has “already affected food security” in many world regions, the SPM says.

Warming is affecting food availability by having a direct impact on crop production, says of the report:

“Observed climate change is already affecting food security through increasing temperatures, changing precipitation patterns, and greater frequency of some extreme events. Increasing temperatures are affecting agricultural productivity in higher latitudes, raising yields of some crops (maize, cotton, wheat, sugar beets), while yields of others (maize, wheat, barley) are declining in lower-latitude regions.”

The current impact of climate change on crop yields varies from region to region, the report notes.

In Asia, some parts, including northern China, have seen rice yield increases as a result of regional warming and other factors, such as agricultural innovation, the report says. Crop yield studies focusing on India, meanwhile, have found that warming cut wheat yields by 5.2% from 1981 to 2009, the report says.

In Africa, yields of staple crops such as maize, wheat, sorghum and fruit, including mangoes, have decreased across the continent “in recent years”, the report says. “The Sahel region of Cameroon has experienced an increasing level of malnutrition, partly due to the impact of climate change since harsh climatic conditions leading to extreme drought have a negative influence on agriculture.”

(To read more about how climate change impacts food around the world, read Carbon Brief’s recent on how traditional dishes could fare if temperatures rise.)

Climate variability can also have a “profound” impact on food availability through phenomena such as El Niño, notes .

For example, this “occurred during late 2015 to early 2016 when a strong El Niño contributed to regional shifts in precipitation in the Sahel region,” the report says. “Significant drought across Ethiopia resulted in widespread crop failure and more than 10 million people in Ethiopia required food aid.”

The impact of climate change on food yields is expected to worsen in coming decades, the report says.

The maps below, taken from page 27 of , shows median yield changes expected in 2070-99, when compared yields from 1980-2010, under a severe climate change scenario (“”). Changes are shown for maize, wheat, soy and rice. On the chart, red shows yield declines of up to 50% while blue shows increases of up to 50%.

It is worth noting that the projections consider the potential impacts of the CO2 fertilisation effect and nitrogen availability stress (both explained in more detail above).

Median yield changes expected for maize, wheat, rice and soy in 2070-99, when compared with yields from 1980-2010, under a severe climate change scenario (RCP8.5). Red shows yield declines of up to 50% while blue shows increases of up to 50%. Grey shows areas where crops are not grown. Source: Figure 5.4 from the .

The map indicates that severe wheat losses could occur in South America and parts of sub-Saharan Africa if future climate change is very high.

As well as affecting yields, climate change could alter food quality, the SPM notes: “Increased atmospheric CO2 levels can lower the of crops.” Nutrients that could be affected by rising CO2 include protein and zinc, the report says.

Another way that climate change affects food is through boosting pests and diseases. The report finds “robust evidence that pests and diseases have already responded to climate change”. It says:

“There is some evidence that exposure will, on average, increase, although there are a few examples where changing stresses may limit the range of a vector [disease carrier].”

Future climate change could also affect livestock production, the report notes. could affect rangelands where cattle are reared, the report says, while increases in heatwaves could have a “direct impact on animal morbidity, mortality and distress”.

Changes to food availability could in turn have an impact on food access and stability via changes to food prices, the report says.

Cereal prices could increase by 1-29% by 2050 as a result of climate change, the SPM says, “leading to higher food prices and increased risk of food insecurity and hunger”.

Higher food prices particularly threaten the world’s poor, the report notes:

“Decreased yields can impact nutrient intake of the poor by decreasing supplies of highly nutritious crops and by promoting adaptive behaviours that may substitute crops that are resilient but less nutritious…In the developed world, poverty is more typically associated with calorifically-dense but nutrient-poor diets, obesity, overweight, and other related diseases.”

The report emphasises that access to food is also highly linked to other land issues, such as desertification, degradation and water availability. To learn more about how these issues are interconnected, read Carbon Brief’s recent guest post on the “”.

How important are socioeconomic changes for future land degradation?

The report emphasises the role that socioeconomic changes around the world will have in determining the planet’s future, noting that projections often show these shifts having a larger impact on land use patterns than climate change itself.

The harm generated by the changing climate will not only result from rising temperatures, but also on how humanity’s consumption patterns, land management and populations shift alongside it, the report says. This is outlined concisely in the SPM:

“Pathways with higher demand for food, feed, and water, more resource intensive consumption and production, and more limited technological improvements in agriculture yields result in higher risks from water scarcity in drylands, land degradation, and food insecurity.”

The “pathways” it refers to are a standard set of “” (SSPs), which are used across the IPCC’s reports to give a sense of how changes in global society, demographics and economics will interact with climate change.

While there are five SSPs in total, the land report mainly focuses on the first three, with each one offering significantly different outcomes. A from last year outlines what each of these scenarios means in more detail.

SSP1 is characterised by low population growth, with just seven billion people on the planet by the end of the century. High incomes, reduced overall inequalities and effective land use regulations are also features of this scenario, as well as less meat consumption and food waste.

Based on a continuation of past trends in consumption and technological progress, SSP2 results in medium population growth, hitting nine billion by 2100.

SSP3 meanwhile sees population nearly double that of SSP1, at 13 billion in 2100. This pathway is characterised by low incomes, resource-intensive consumption patterns, barriers to trade and a slow rate of technological change.

Which of these socioeconomic pathways is followed – and the changes in population, consumption patterns and other factors that result – has a large impact on the way land will be used in future, the report says.

The figure below shows how much more (positive numbers) or less (negative numbers) of the Earth’s surface would be devoted to forest (blue line and shaded area), bioenergy crops (purple), “natural land” (red), cropland (yellow) or pasture (green) through the 21st century, compared with the levels in 2010.

From left to right, each chart shows how land use will change in scenarios limiting warming to 1.5C by the end of the century. The left-most chart shows this for SSP1, with SSP2 in the centre and SSP5 on the right (this is a , fossil-fuel dependent pathway).

Changes, relative to 2010, in the area of land devoted to cropland (yellow), pasture (green), bioenergy crops (purple), forest (blue) and “natural land” (red) in scenarios limiting warming to 1.5C above pre-industrial temperatures. Left: SSP1. Centre: SSP2. Right: SSP5. Source: Figure SPM4A from the .

These changing priorities for land use under each different socioeconomic pathway are expected, in turn, to influence how strongly rising temperatures increase risks, the report says.

These influences are illustrated in the figure below, which shows how two very different pathways – SSP1 and SSP3 – will affect climate-related risk.

For example, SSP1 carries only a “moderate risk” of desertification (leftmost column in the chart below) even if temperatures rise as high as 3C. (This is the increase the world is for given nations’ existing climate commitments.)

In contrast, under the SSP3 scenario, the risk of desertification becomes “high” at between 1.2C and 1.5C of warming, and approaches “very high” below 3C (second from left). There is a similar trend for other risks relating to land degradation, such as fires and coastal flooding.

Figure showing how different socioeconomic pathways (SSP1 and SSP3) will affect climate-related risks. The colours represent levels of impact/risk, with purple meaning very high risks and the presence of “significant irreversibility”, climate-related hazards and limited ability to adapt, and white indicating no impacts that are detectable and attributable to climate change. Letters represent the level of confidence in the findings (with “L” representing low, “M” representing medium and “H” representing high). Source: , Figure SPM. 2b.

The report notes that the greatest number of relevant SSP studies to date consider how food security will be affected as temperatures rise.

Changes in crop yields and accompanying threats to the food supply been attributed to climate change, but again these risks are exacerbated by certain socioeconomic scenarios, it says.

estimated that SSP1 would see 100 million people at risk of climate-related hunger beyond 2.5C, while SSP3 would leave over 800 million people vulnerable by 3C.

The authors conclude that addressing cycles of poverty, land degradation and emissions “in a holistic manner” will be necessary to produce sustainable development of the kind exemplified by SSP1 and to avoid the worst outcomes.

For more information, Table 6.2 in of the report outlines the key challenges faced under different SSPs – including SSP4 and SSP5 – for outcomes including climate change adaptation and mitigation, land degradation and food insecurity.

※ 全文及圖片詳見:()

作者

如果有一件事是重要的,如果能為孩子實現一個願望,那就是人類與大自然和諧共存。

於特有生物研究保育中心服務,小鳥和棲地是主要的研究對象。是龜毛的讀者,認為龜毛是探索世界的美德。

本站聲明:網站內容來源於https://e-info.org.tw/,如有侵權,請聯繫我們,我們將及時處理

【其他文章推薦】

飲水機設備有哪些?

※如何選購橡膠製品規格有哪些?

AVX DistributorAVX TPSAVX鉭質電容器 規格有哪些?各別作用在於?

空壓機何時可換油? 教你正確觀念與維護 !

※真空封口機該不該買?使用心得分享

※專業銷售、服務第一,桶裝水推薦品牌?

定量泵浦如何運用在食品加工上呢?

嘉義縣府為處理流浪犬問題,7月17日起實施精準捕捉專線

嘉義縣府為處理流浪犬問題,7月17日起實施精準捕捉專線,並以「嘉義縣廢棄物清除處理基金」經費委託民間機構代養收容犬隻、增聘六名動物保護管制人員,嘉義縣議會臨時會昨聯席審查通過兩案,預計本週五進行二、三讀後實施。

農委會調查,嘉義縣流浪犬估計有9000多隻,但嘉義縣家畜疾病防治所目前捕捉流浪貓、犬業務人力僅兩人,嘉縣府農業處提案增聘動物保護管制人員擴充至八人,今年度經費122萬元,另以每隻狗每月1000元費用委託民間代養機構收容犬隻,經費396萬元。

嘉義縣家畜疾病防治所長林珮如表示,實施精準捕捉後已受理302件通報,獲報追車咬人部分,派員捕捉29件,捕捉17隻,有傷人、性情凶悍犬隻均採收容處理;緊急救援動物若評估健康安全,或經當地居民同意,則採TNVR(Trap誘捕、Neuter絕育、Vaccinate防疫、Return回置)處理。

本站聲明:網站內容來源於https://e-info.org.tw/,如有侵權,請聯繫我們,我們將及時處理【其他文章推薦】

※哪裡買的到省力省空間,方便攜帶的購物推車?

※廢氣洗滌塔,叫得動, 找得到的專業廠商‎

※市面十大品牌封口機!該如何選購?

塑膠射出成型加工商品有哪些?

※選用哪種桶裝水,外宿露營超方便?

※各款電動堆高機價格?

※掌握產品行銷策略,帶你認識商品包裝設計基本要素

摘韓國瑜曾爬上前鎮區勞工公園外一棵約十公尺高的榕樹,網友封為「國瑜樹」

韓國瑜曾爬上前鎮區勞工公園外一棵約十公尺高的榕樹,網友封為「國瑜樹」;不過,同區高雄市中正高工通學步道的榕樹,兩年前遭斷頭修剪引發「內傷」枯死。

高雄愛樹人協會成員14日到樹旁哀悼,形容樹枝炸開為枯死前奮力冒芽,「絕命求生」遺跡,怒批韓國瑜選前簽署「高雄市樹木保護施政承諾書」,選後爬榕樹找登革熱病媒蚊,竟無視同區枯死榕樹。

協會團長莊傑任表示,台北市立法規定樹木修剪規範,禁止斷頭等不當修剪,韓市長選前承諾比照,選後雖研商修正,卻不願比照台北辦理,一拖再拖,改革速度異常緩慢,導致今年又有多處斷頭災情產生。

莊傑任強調,樹木修剪重殘死亡期約二至五年,民眾不易發現,若要追究公共財產毀損責任,承辦及修剪人員多已驗收取款更換。

愛樹團體指出,斷頭修剪又名截幹修剪法(TOP),會擾亂根冠比,並讓樹皮直接曝曬陽光,截斷傷口會遭害蟲侵擾滋生病原菌,以榕樹為例,易感染褐根菌死亡。

本站聲明:網站內容來源於https://e-info.org.tw/,如有侵權,請聯繫我們,我們將及時處理

【其他文章推薦】

※使用真空封口機常見問題?

※影響示波器測試準確度的五大因素

※各大百貨每波促銷贈品活動,限量知名LOGOL型資料夾,獨家販售中!!

※哪裡有合版印刷優惠,尋找L夾客製化印刷廠商?

※如何正確使用飲水機?

洗滌塔運作原理介紹

無塵擦拭紙各大品牌廠商販售比價網!